Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nat Commun ; 14(1): 3235, 2023 06 03.
Article in English | MEDLINE | ID: covidwho-20236152

ABSTRACT

Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been reported in immune-compromised individuals and people undergoing immune-modulatory treatments. Although intrahost evolution has been documented, direct evidence of subsequent transmission and continued stepwise adaptation is lacking. Here we describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of a new Omicron sublineage, BA.1.23, over an eight-month period. The initially transmitted BA.1.23 variant encoded seven additional amino acid substitutions within the spike protein (E96D, R346T, L455W, K458M, A484V, H681R, A688V), and displayed substantial resistance to neutralization by sera from boosted and/or Omicron BA.1-infected study participants. Subsequent continued BA.1.23 replication resulted in additional substitutions in the spike protein (S254F, N448S, F456L, M458K, F981L, S982L) as well as in five other virus proteins. Our findings demonstrate not only that the Omicron BA.1 lineage can diverge further from its already exceptionally mutated genome but also that patients with persistent infections can transmit these viral variants. Thus, there is, an urgent need to implement strategies to prevent prolonged SARS-CoV-2 replication and to limit the spread of newly emerging, neutralization-resistant variants in vulnerable patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Acclimatization , Antibodies, Neutralizing , Antibodies, Viral
2.
J Infect Dis ; 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-20230679

ABSTRACT

BACKGROUND: The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccination antigens impact the magnitude and avidity of the polyclonal response. METHODS: We studied binding and avidity of different antibody isotypes to the spike, the receptor binding domain (RBD), and the nucleoprotein (NP) of wild type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated, mRNA boosted, hybrid immune individuals, and in individuals with breakthrough cases during the peak of the BA.1 wave. RESULTS: We found an increase in spike binding antibodies and antibody avidity with increasing number of exposures to infection and/or vaccination. Nucleoprotein antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, but displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and receptor binding domain (RBDs). The magnitude of the antibody response and avidity correlated with neutralizing activity against WT virus. CONCLUSIONS: The magnitude and quality of the antibody response increased with the number of antigen exposures, including breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was impacted by the number of prior antigenic exposures.

3.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: covidwho-2254335

ABSTRACT

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Antibodies , Epitopes , Antibodies, Viral , Antibodies, Neutralizing
4.
Sci Transl Med ; 15(683): eabo2847, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2239552

ABSTRACT

NDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand. The SARS-CoV-2 neutralizing and spike protein binding activity of NDV-HXP-S postvaccination serum samples was compared to that of samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of BNT162b2 vaccinees, whereas spike protein binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from mRNA vaccinees. This led us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios that were lower than those of BNT162b2 sera, suggesting that NDV-HXP-S vaccination elicits a high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induced an RBD-focused antibody response with little reactivity to S2. This finding may explain the high proportion of neutralizing antibodies. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers that are comparable to those elicited by mRNA vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Animals , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , RNA, Messenger/genetics , Antibodies, Viral
6.
Vaccine ; 40(42): 6114-6124, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2031726

ABSTRACT

Two messenger RNA (mRNA)-based vaccines are widely used globally to prevent coronavirus disease 2019 (COVID-19). Both vaccine formulations contain PEGylated lipids in their composition, in the form of polyethylene glycol [PEG] 2000 dimyristoyl glycerol for mRNA-1273, and 2 [(polyethylene glycol)-2000]-N,N-ditetradecylacetamide for BNT162b2. It is known that some PEGylated drugs and products for human use which contain PEG are capable of eliciting immune responses that lead to to detectable PEG-specific antibodies in serum. In this study, we determined if any of the components of mRNA-1273 or BNT162b2 formulations elicited PEG-specific antibody responses in serum by enzyme linked immunosorbent assay (ELISA). We detected an increase in the reactivity to mRNA vaccine formulations in mRNA-1273 but not BNT162b2 vaccinees' sera in a prime-boost dependent manner. Furthermore, we observed the same pattern of reactivity against irrelevant lipid nanoparticles from an influenza virus mRNA formulation and found that the reactivity of such antibodies correlated well with antibody levels against high and low molecular weight PEG. Using sera from participants selected based on the vaccine-associated side effects experienced after vaccination, including delayed onset, injection site or severe allergic reactions, we found no obvious association between PEG antibodies and adverse reactions. Overall, our data shows a differential induction of anti-PEG antibodies by mRNA-1273 and BNT162b2. The clinical relevance of PEG reactive antibodies induced by administration of the mRNA-1273 vaccine, and the potential interaction of these antibodies with other PEGylated drugs remains to be explored.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Antibodies , Antibodies, Viral , COVID-19/prevention & control , Glycerol , Humans , Lipids , Liposomes , Nanoparticles , Polyethylene Glycols , Proteins , RNA, Messenger , Vaccines, Synthetic , mRNA Vaccines
7.
Nat Commun ; 13(1): 5135, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2008273

ABSTRACT

Immune responses at the respiratory mucosal interface are critical to prevent respiratory infections but it is unclear to what extent antigen specific mucosal secretory IgA (SIgA) antibodies are induced by mRNA vaccination in humans. Here we analyze paired serum and saliva samples from patients with and without prior coronavirus disease 2019 (COVID-19) at multiple time points pre and post severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. Our results suggest mucosal SIgA responses induced by mRNA vaccination are impacted by pre-existing immunity. Indeed, vaccination induced a minimal mucosal SIgA response in individuals without pre-exposure to SARS-CoV-2 while SIgA induction after vaccination was more efficient in patients with a history of COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin A, Secretory , RNA, Messenger , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vaccination
8.
mBio ; 13(5): e0178422, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2001780

ABSTRACT

The PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) cohort follows health care workers with and without documented coronavirus disease 2019 (COVID-19) since April 2020. We report our findings regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-binding antibody stability and protection from infection in the pre-variant era. We analyzed data from 400 health care workers (150 seropositive and 250 seronegative at enrollment) for a median of 84 days. The SARS-CoV-2 spike-binding antibody titers were highly variable with antibody levels decreasing over the first 3 months, followed by a relative stabilization. We found that both more advanced age (>40 years) and female sex were associated with higher antibody levels (1.6-fold and 1.4-fold increases, respectively). Only six percent of the initially seropositive participants "seroreverted." We documented a total of 11 new SARS-CoV-2 infections (10 naive participants and 1 previously infected participant without detectable antibodies; P < 0.01), indicating that spike antibodies limit the risk of reinfection. These observations, however, only apply to SARS-CoV-2 variants antigenically similar to the ancestral SARS-CoV-2 ones. In conclusion, SARS-CoV-2 antibody titers mounted upon infection are stable over several months and provide protection from infection with antigenically similar viruses. IMPORTANCE SARS-CoV-2 is the cause of one of the largest noninfluenza pandemics of this century. This exceptional public health crisis highlights the urgent need for better understanding of the correlates of protection from infection and severe COVID-19. We established the PARIS cohort to determine durability and effectiveness of SARS-CoV-2 immune responses. Here, we report on the kinetics of SARS-CoV-2 spike-binding antibody after SARS-CoV-2 infection as well as reinfection rates using data collected between April 2020 and August 2021. We found that antibody levels stabilized at individual steady state levels after an initial decrease with seroreversion being found in only 6% of the convalescent participants. SARS-CoV-2 infections only occurred in participants without detectable spike-binding antibodies, indicating significant protection from reinfection with antigenically similar viruses. Our data indicate the importance of spike-binding antibody titers in protection prior to vaccination and the wide circulation of antigenically diverse variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Adult , SARS-CoV-2/genetics , Reinfection , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Antibodies, Neutralizing
9.
World Neurosurg ; 160: e608-e615, 2022 04.
Article in English | MEDLINE | ID: covidwho-1867895

ABSTRACT

BACKGROUND: Patient-reported outcome measures (PROMs) are traditionally used to track recovery of patients after spine surgery. Wearable accelerometers have adjunctive value because of the continuous, granular, and objective data they provide. We conducted a prospective study of lumbar laminectomy patients to determine if time-series data from wearable accelerometers could delineate phases of recovery and compare accelerometry data to PROMs during recovery tracking. METHODS: Patients with lumbar stenosis for whom lumbar laminectomy was indicated were prospectively recruited. Subjects wore accelerometers that recorded their daily step counts from at least 1 week preoperatively to 6 months postoperatively. Subjects completed the Oswestry Disability Index and the 12-Item Short Form Health Survey preoperatively and at 2 weeks, 1 month, 3 months, and 6 months postoperatively. Daily aggregate median steps and individual visit-specific median steps were calculated. The Pruned Linear Exact Time method was used to segment aggregate median steps into distinct phases. Associations between visit-specific median steps and PROMs were identified using Spearman rank correlation. RESULTS: Segmentation analysis revealed 3 distinct postoperative phases: step counts rapidly increased for the first 40 days postoperatively (acute healing), then gained more slowly for the next 90 days (recovery), and finally plateaued at preoperative levels (stabilization). Visit-specific median steps were significantly correlated with PROMs throughout the postoperative period. PROMs significantly exceeded baseline at 6 months postoperatively, while step counts did not (all P < 0.05). CONCLUSIONS: Continuous data from accelerometers allowed for identification of 3 distinct stages of postoperative recovery after lumbar laminectomy. PROMs remain necessary to capture subjective elements of recovery.


Subject(s)
Laminectomy , Spinal Stenosis , Accelerometry , Humans , Laminectomy/methods , Lumbar Vertebrae/surgery , Patient Reported Outcome Measures , Prospective Studies , Spinal Stenosis/surgery , Treatment Outcome
10.
mSphere ; 7(3): e0017922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1854243

ABSTRACT

To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Reinfection , Seroepidemiologic Studies
12.
Nature ; 602(7898): 682-688, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616995

ABSTRACT

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Convalescence , Immune Evasion/immunology , Immune Sera/immunology , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/transmission , Female , Humans , Immunization, Secondary , Models, Molecular , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
14.
EBioMedicine ; 73: 103626, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1471943

ABSTRACT

BACKGROUND: Highly efficacious vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed. However, the emergence of viral variants that are more infectious than the earlier SARS-CoV-2 strains is concerning. Several of these viral variants have the potential to partially escape neutralizing antibody responses, warranting continued immune-monitoring. METHODS: We used a panel of 30 post-mRNA vaccination sera to determine neutralization and RBD and spike binding activity against a number of emerging viral variants. The virus neutralization was determined using authentic SARS-CoV-2 clinical isolates in an assay format that mimics physiological conditions. FINDINGS: We tested seven currently circulating viral variants of concern/interest, including the three Iota sublineages, Alpha (E484K), Beta, Delta and Lambda in neutralization assays. We found only small decreases in neutralization against Iota and Delta. The reduction was stronger against a sub-variant of Lambda, followed by Beta and Alpha (E484K). Lambda is currently circulating in parts of Latin America and was detected in Germany, the US and Israel. Of note, reduction in a receptor binding domain and spike binding assay that also included Gamma, Kappa and A.23.1 was negligible. INTERPRETATION: Taken together, these findings suggest that mRNA SARS-CoV-2 vaccines may remain effective against these viral variants of concern/interest and that spike binding antibody tests likely retain specificity in the face of evolving SARS-CoV-2 diversity. FUNDING: This work is part of the PARIS/SPARTA studies funded by the NIAID Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract 75N93019C00051. In addition, this work was also partially funded by the Centers of Excellence for Influenza Research and Surveillance (CEIRS, contract # HHSN272201400008C), the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611 (5384), by anonymous donors and by the Serological Sciences Network (SeroNet) in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024, Task Order No. 75N91020F00003.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Antigen-Antibody Reactions , COVID-19/prevention & control , COVID-19/virology , Humans , Neutralization Tests , Phylogeny , Protein Domains/immunology , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism
16.
Cell ; 184(15): 3936-3948.e10, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1260677

ABSTRACT

In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , RNA, Messenger/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Binding, Competitive , Humans , Immunoglobulin G/metabolism , Mutation/genetics , Protein Domains , Somatic Hypermutation, Immunoglobulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL